Download PDF Manual

Servicing Your Airbag-Equipped Vehicle on page 80. You should keep a record with all parts receipts and list the mileage and the date of any service work you perform. See Maintenance Record on page 444.


315


Adding Equipment to the Outside of Your Vehicle Things you might add to the outside of your vehicle can affect the airflow around it. This may cause wind noise and affect windshield washer performance. Check with your dealer before adding equipment to the outside of your vehicle. Fuel Use of the recommended fuel is an important part of the proper maintenance of your vehicle. To help keep your engine clean and maintain optimum vehicle performance, GM recommends the use of gasoline advertised as TOP TIER Detergent Gasoline.


Gasoline Octane Use regular unleaded gasoline with a posted octane rating of 87 or higher. If the octane rating is less than 87, you may notice an audible knocking noise when you drive, commonly referred to as spark knock. If this occurs, use a gasoline rated at 87 octane or higher as soon as possible.


316


If you are using gasoline rated at 87 octane or higher and you hear heavy knocking, your engine needs service.


Gasoline Specifications At a minimum, gasoline should meet ASTM specification D 4814 in the United States or CAN/CGSB-3.5 in Canada. Some gasolines may contain an octane-enhancing additive called methylcyclopentadienyl manganese tricarbonyl (MMT). General Motors recommends against the use of gasolines containing MMT. See Additives on page 317 for additional information.


California Fuel If your vehicle is certified to meet California Emissions Standards, it is designed to operate on fuels that meet California specifications. See the underhood emission control label. If this fuel is not available in states adopting California emissions standards, your vehicle will operate satisfactorily on fuels meeting federal specifications, but emission control system performance may be affected.


The malfunction indicator lamp may turn on and your vehicle may fail a smog-check test. See Malfunction Indicator Lamp on page 186. If this occurs, return to your authorized GM dealer for diagnosis. If it is determined that the condition is caused by the type of fuel used, repairs may not be covered by your warranty.


Additives To provide cleaner air, all gasolines in the United States are now required to contain additives that will help prevent engine and fuel system deposits from forming, allowing your emission control system to work properly. In most cases, you should not have to add anything to your fuel. However, some gasolines contain only the minimum amount of additive required to meet U.S. Environmental Protection Agency regulations. To help keep fuel injectors and intake valves clean, or if your vehicle experiences problems due to dirty injectors or valves, look for gasoline that is advertised as TOP TIER Detergent Gasoline. Also, your dealer has additives that will help correct and prevent most deposit-related problems.


Gasolines containing oxygenates, such as ethers and ethanol, and reformulated gasolines may be available in your area. General Motors recommends that you use these gasolines if they comply with the specifications described earlier. However, E85 (85% ethanol) and other fuels containing more than 10% ethanol must not be used in vehicles that were not designed for those fuels. Notice: Your vehicle was not designed for fuel that contains methanol. Do not use fuel containing methanol. It can corrode metal parts in your fuel system and also damage the plastic and rubber parts. That damage would not be covered under your warranty. Some gasolines that are not reformulated for low emissions may contain an octane-enhancing additive called methylcyclopentadienyl manganese tricarbonyl (MMT); ask the attendant where you buy gasoline whether the fuel contains MMT. General Motors recommends against the use of such gasolines. Fuels containing MMT can reduce the life of spark plugs and the performance of the emission control system may be affected. The malfunction indicator lamp may turn on. If this occurs, return to your dealer for service.


317


Fuels in Foreign Countries If you plan on driving in another country outside the United States or Canada, the proper fuel may be hard to find. Never use leaded gasoline or any other fuel not recommended in the previous text on fuel. Costly repairs caused by use of improper fuel would not be covered by your warranty. To check the fuel availability, ask an auto club, or contact a major oil company that does business in the country where you will be driving.


Filling the Tank


{CAUTION:


Fuel vapor burns violently and a fuel fire can cause bad injuries. To help avoid injuries to you and others, read and follow all the instructions on the pump island. Turn off your engine when you are refueling. Do not smoke if you are near fuel or refueling your vehicle. Keep sparks, flames, and smoking materials away from fuel. Do not leave the fuel pump unattended when refueling your vehicle. This is against the law in some places. Keep children away from the fuel pump; never let children pump fuel.


318


{CAUTION:


If you spill fuel and then something ignites it, you could be badly burned. Fuel can spray out on you if you open the fuel cap too quickly. This spray can happen if your tank is nearly full, and is more likely in hot weather. Open the fuel cap slowly and wait for any hiss noise to stop. Then unscrew the cap all the way.


The fuel cap is located on the driver’s side of the vehicle. Some vehicles might have a fuel door. Open the door to access the fuel cap. Some vehicles might have a locking fuel cap. Use the fuel cap key to unlock the fuel cap. If you ever need a replacement key, your dealer can help you get one. To remove the fuel cap, turn it slowly counterclockwise. While refueling, let the fuel cap hang by the tether, if it has one.


Be careful not to spill fuel. Do not top off or overfill the tank and wait a few seconds after you have finished pumping before removing the nozzle. Clean fuel from painted surfaces as soon as possible. See Washing Your Vehicle on page 410. When replacing the fuel cap, turn it clockwise until it clicks. Make sure the cap is fully installed. The diagnostic system can determine if the fuel cap has been left off or improperly installed. This would allow fuel to evaporate into the atmosphere. See Malfunction Indicator Lamp on page 186.


319


The FUEL CAP message will be displayed on the Driver Information Center (DIC) if the fuel cap is not properly installed. See DIC Warnings and Messages on page 196 for more information.


Filling a Portable Fuel Container


{CAUTION:


{CAUTION:


If a fire starts while you are refueling, do not remove the nozzle. Shut off the flow of fuel by shutting off the pump or by notifying the station attendant. Leave the area immediately.


If you need a new fuel cap, be sure to


Notice: get the right type. Your dealer can get one for you. If you get the wrong type, it may not fit properly. This may cause your malfunction indicator lamp to light and may damage your fuel tank and emissions system. See Malfunction Indicator Lamp on page 186.


320


Never fill a portable fuel container while it is in your vehicle. Static electricity discharge from the container can ignite the gasoline vapor. You can be badly burned and your vehicle damaged if this occurs. To help avoid injury to you and others:


(cid:127) Dispense gasoline only into approved


containers.


(cid:127) Do not fill a container while it is inside a vehicle, in a vehicle’s trunk, pickup bed, or on any surface other than the ground.


(cid:127) Bring the fill nozzle in contact with the


inside of the fill opening before operating the nozzle. Contact should be maintained until the filling is complete.


(cid:127) Do not smoke while pumping gasoline.


Checking Things Under the Hood


Hood Release To open the hood, do the following:


{CAUTION:


An electric fan under the hood can start up and injure you even when the engine is not running. Keep hands, clothing, and tools away from any underhood electric fan.


{CAUTION:


Things that burn can get on hot engine parts and start a fire. These include liquids like fuel, oil, coolant, brake fluid, windshield washer and other fluids, and plastic or rubber. You or others could be burned. Be careful not to drop or spill things that will burn onto a hot engine.


1. Pull the handle with this symbol on it. It is located inside the vehicle on the lower left side of the instrument panel.


2. Release the secondary latch on the hood.


It is located below the front center of the hood.


3. Lift the hood. Before closing the hood, be sure all the filler caps are on properly. Then pull the hood down and close it firmly.


321


Engine Compartment Overview When you open the hood on the engine, this is what you will see:


322


A. Windshield Washer Fluid Reservoir. See “Adding Washer Fluid” under Windshield Washer Fluid on page 346.


B. Engine Coolant Recovery Tank. See Engine


Coolant on page 335.


C. Engine Air Cleaner/Filter. See Engine Air


Cleaner/Filter on page 328.


D. Power Steering Fluid Reservoir. See Power


Steering Fluid on page 345.


E. Automatic Transmission Fluid Dipstick (If


Equipped). See “Checking the Fluid Level” under Automatic Transmission Fluid on page 329.


F. Engine Oil Fill Cap. See “When to Add Engine


Oil” under Engine Oil on page 323.


G. Radiator Pressure Cap. See Cooling System


on page 340.


H. Remote Negative (−) Terminal (GND). See


Jump Starting on page 352.


I. Engine Oil Dipstick. See “Checking Engine Oil”


under Engine Oil on page 323.


J. Positive (+) Battery Terminal. See Jump


Starting on page 352.


K. Brake Fluid Reservoir. See “Brake Fluid” under


Brakes on page 347.


L. Engine Compartment Fuse Block. See Engine


Compartment Fuse Block on page 418.


M. Battery. See Battery on page 351. N. Hydraulic Clutch Fluid Reservoir (If Equipped).


See Hydraulic Clutch on page 334.


Engine Oil Checking Engine Oil It is a good idea to check the engine oil every time you get fuel. In order to get an accurate reading, the oil must be warm and the vehicle must be on level ground. The engine oil dipstick handle is a yellow loop. See Engine Compartment Overview on page 322
for the location of the engine oil dipstick. 1. Turn off the engine and give the oil several minutes to drain back into the oil pan. If you do not do this, the oil dipstick might not show the actual level.


2. Pull out the dipstick and clean it with a paper


towel or cloth, then push it back in all the way. Remove it again, keeping the tip down, and check the level.


323


When to Add Engine Oil


See Engine Compartment Overview on page 322 for the location of the engine oil fill cap.


Be sure to add enough oil to put the level somewhere in the proper operating range. Push the dipstick all the way back in when you are through.


If the oil is below the cross-hatched area (L), you will need to add at least one quart/liter of oil. But you must use the right kind. This section explains what kind of oil to use. For engine oil crankcase capacity, see Capacities and Specifications on page 422. Notice: Do not add too much oil. If the engine has so much oil that the oil level gets above the cross-hatched area that shows the proper operating range, the engine could be damaged.


324


What Kind of Engine Oil to Use


These numbers on an oil container show its viscosity, or thickness. Do not use other viscosity oils such as SAE 20W-50.


Oils meeting these requirements should also have the starburst symbol on the container. This symbol indicates that the oil has been certified by the American Petroleum Institute (API).


Look for two things: (cid:127) GM6094M


Your vehicle’s engine requires oil meeting GM Standard GM6094M. You should look for and use only an oil that meets GM Standard GM6094M. (cid:127) SAE 5W-30


As shown in the viscosity chart, SAE 5W-30
is best for your vehicle.


You should look for this information on the oil container, and use only those oils that are identified as meeting GM Standard GM6094M and have the starburst symbol on the front of the oil container. Notice: Use only engine oil identified as meeting GM Standard GM6094M and showing the American Petroleum Institute Certified For Gasoline Engines starburst symbol. Failure to use the recommended oil can result in engine damage not covered by your warranty. GM Goodwrench® oil meets all the requirements for your vehicle.


325


When the system has calculated that oil life has been diminished, it will indicate that an oil change is necessary. A CHANGE OIL message will come on. See DIC Warnings and Messages on page 196. Change your oil as soon as possible within the next 600 miles (1 000 km). It is possible that, if you are driving under the best conditions, the oil life system may not indicate that an oil change is necessary for over a year. However, your engine oil and filter must be changed at least once a year and at this time the system must be reset. Your dealer has GM-trained people who will perform this work using genuine GM parts and reset the system. It is also important to check your oil regularly and keep it at the proper level. If the system is ever reset accidentally, you must change your oil at 3,000 miles (5 000 km) since your last oil change. Remember to reset the oil life system whenever the oil is changed.


If you are in an area of extreme cold, where the temperature falls below −20°F (−29°C), it is recommended that you use either an SAE 5W-30
synthetic oil or an SAE 0W-30 oil. Both will provide easier cold starting and better protection for the engine at extremely low temperatures. Engine Oil Additives Do not add anything to the oil. The recommended oils with the starburst symbol that meet GM Standard GM6094M are all you will need for good performance and engine protection.


Engine Oil Life System When to Change Engine Oil Your vehicle has a computer system that lets you know when to change the engine oil and filter. This is based on engine revolutions and engine temperature, and not on mileage. Based on driving conditions, the mileage at which an oil change will be indicated can vary considerably. For the oil life system to work properly, you must reset the system every time the oil is changed.


326


How to Reset the Engine Oil Life System The Engine Oil Life System calculates when to change your engine oil and filter based on vehicle use. Anytime your oil is changed, reset the system so it can calculate when the next oil change is required. If a situation occurs where you change your oil prior to a CHANGE OIL message being turned on, reset the system. To reset the Engine Oil Life system, do the following: 1. With the engine off, turn the ignition to ON. 2. Press and release the stem in the lower center


of the instrument cluster until the OIL LIFE message is displayed.


3. Once the alternating OIL LIFE and RESET messages appear, press and hold the stem until several beeps sound. This confirms that the oil life system has been reset.


4. Turn the key to LOCK. If the CHANGE OIL message comes back on when you start your vehicle, the engine oil life system has not reset. Repeat the procedure. See DIC Warnings and Messages on page 196.


What to Do with Used Oil Used engine oil contains certain elements that may be unhealthy for your skin and could even cause cancer. Do not let used oil stay on your skin for very long. Clean your skin and nails with soap and water, or a good hand cleaner. Wash or properly dispose of clothing or rags containing used engine oil. See the manufacturer’s warnings about the use and disposal of oil products. Used oil can be a threat to the environment. If you change your own oil, be sure to drain all the oil from the filter before disposal. Never dispose of oil by putting it in the trash, pouring it on the ground, into sewers, or into streams or bodies of water. Instead, recycle it by taking it to a place that collects used oil. If you have a problem properly disposing of your used oil, ask your dealer, a service station, or a local recycling center for help.


327


Engine Air Cleaner/Filter


The engine air cleaner/filter is located in the engine compartment on the passenger’s side of the vehicle. See Engine Compartment Overview on page 322 for more information on location.


328


When to Inspect the Engine Air Cleaner/Filter Inspect the air cleaner/filter at the Maintenance II intervals and replace it at the first oil change after each 50,000 mile (83 000 km) interval. See Scheduled Maintenance on page 429 for more information. If you are driving in dusty/dirty conditions, inspect the filter at each engine oil change. How to Inspect the Engine Air Cleaner/Filter To inspect or replace the engine air cleaner/filter, do the following: 1. Unfasten the clips that hold the cover on and


remove the cover.


2. Lift out the engine air cleaner/filter. 3. Inspect or replace the air filter. See Normal


Maintenance Replacement Parts on page 442
to determine which filter to use.


4. Reinstall the engine air cleaner/filter cover. Fasten the clips to hold the cover in place.


{CAUTION:


Operating the engine with the air cleaner/filter off can cause you or others to be burned. The air cleaner not only cleans the air; it helps to stop flames if the engine backfires. If it is not there and the engine backfires, you could be burned. Do not drive with it off, and be careful working on the engine with the air cleaner/filter off.


If the air cleaner/filter is off, a backfire


Notice: can cause a damaging engine fire. And, dirt can easily get into your engine, which will damage it. Always have the air cleaner/filter in place when you are driving.


Automatic Transmission Fluid When to Check and Change Automatic Transmission Fluid A good time to check your automatic transmission fluid level is when the engine oil is changed. Change the fluid and filter at the intervals listed in Additional Required Services on page 432, and be sure to use the transmission fluid listed in Recommended Fluids and Lubricants on page 440. How to Check Automatic Transmission Fluid Because this operation can be a little difficult, you may choose to have this done at the dealership service department.


329


If you do it yourself, be sure to follow all the instructions here, or you could get a false reading on the dipstick. Notice: Too much or too little fluid can damage your transmission. Too much can mean that some of the fluid could come out and fall on hot engine parts or exhaust system parts, starting a fire. Too little fluid could cause the transmission to overheat. Be sure to get an accurate reading if you check your transmission fluid. Wait at least 30 minutes before checking the transmission fluid level if you have been driving: (cid:127) When outside temperatures are above


90°F (32°C).


In heavy traffic — especially in hot weather.


(cid:127) At high speed for quite a while. (cid:127) (cid:127) While pulling a trailer. To get the right reading, the fluid should be at normal operating temperature, which is 180°F to 200°F (82°C to 93°C).


Get the vehicle warmed up by driving about 15 miles (24 km) when outside temperatures are above 50°F (10°C). If it is colder than 50°F (10°C), drive the vehicle in THIRD (3) until the engine temperature gage moves and then remains steady for 10 minutes. A cold fluid check can be made after the vehicle has been sitting for eight hours or more with the engine off, but this is used only as a reference. Let the engine run at idle for five minutes if outside temperatures are 50°F (10°C) or more. If it is colder than 50°F (10°C), you may have to idle the engine longer. Should the fluid level be low during this cold check, you must check the fluid hot before adding fluid. Checking the fluid hot will give you a more accurate reading of the fluid level. Checking the Fluid Level Prepare your vehicle as follows: 1. Park your vehicle on a level place. Keep the


engine running.


2. With the parking brake applied, place the shift


lever in PARK (P).


330


3. With your foot on the brake pedal, move the shift lever through each gear range, pausing for about three seconds in each range. Then, position the shift lever in PARK (P). 4. Let the engine run at idle for three minutes


or more.


Then, without shutting off the engine, follow these steps: 1. Flip the handle up and then pull out the dipstick and wipe it with a clean rag or paper towel.


The automatic transmission dipstick handle with this symbol on it is located in the engine compartment on the passenger’s side of the vehicle.


See Engine Compartment Overview on page 322 for more information on location.


2. Push it back in all the way, wait three seconds


and then pull it back out again.


3. Check both sides of the dipstick, and read the


lower level. The fluid level must be in the COLD area, below the cross-hatched area, for a cold check or in the HOT or cross-hatched area for a hot check. Be sure to keep the dipstick pointed down to get an accurate reading.


4. If the fluid level is in the acceptable range, push the dipstick back in all the way; then flip the handle down to lock the dipstick in place.


331


How to Add Automatic Transmission Fluid Refer to the Maintenance Schedule to determine what kind of transmission fluid to use. See Recommended Fluids and Lubricants on page 440. Add fluid only after checking the transmission fluid while it is hot. A cold check is used only as a reference. If the fluid level is low, add only enough of the proper fluid to bring the level up to the HOT area for a hot check. It does not take much fluid, generally less than one pint (0.5 L). Do not overfill. Notice: Use of the incorrect automatic transmission fluid may damage your vehicle, and the damages may not be covered by your warranty. Always use the automatic transmission fluid listed in Recommended Fluids and Lubricants on page 440. (cid:127) After adding fluid, recheck the fluid level as described under “How to Check Automatic Transmission Fluid,” earlier in this section.


(cid:127) When the correct fluid level is obtained, push the dipstick back in all the way; then flip the handle down to lock the dipstick in place.


332


Manual Transmission Fluid When to Check A good time to have it checked is when the engine oil is changed. However, the fluid in your manual transmission does not require changing. How to Check Because this operation can be a little difficult, you may choose to have this done at your GM dealership service department. If you do it yourself, be sure to follow all the instructions here, or you could get a false reading. Notice: Too much or too little fluid can damage your transmission. Too little fluid could cause the transmission to overheat. Be sure to get an accurate reading if you check your transmission fluid. Check the fluid level only when your engine is off, the vehicle is parked on a level place and the transmission is cool enough for you to rest your fingers on the transmission case.


Then, follow these steps:


How to Add Fluid Here is how to add fluid. Refer to the Maintenance Schedule to determine what kind of fluid to use. See Recommended Fluids and Lubricants on page 440. 1. Remove the filler plug. 2. Add fluid at the filler plug hole. Add only enough fluid to bring the fluid level up to the bottom of the filler plug hole.


3. Install the filler plug. Be sure the plug is


fully seated.


1. Remove the filler plug. 2. Check that the lubricant level is up to the


bottom of the filler plug hole.


3. If the fluid level is good, install the plug and be sure it is fully seated. If the fluid level is low, add more fluid as described in the next steps.


333


Hydraulic Clutch The hydraulic clutch linkage in your vehicle is self-adjusting. The clutch master cylinder reservoir is filled with hydraulic clutch fluid.


When to Check and What to Use


The hydraulic clutch fluid reservoir cap has this symbol on it. See Engine Compartment Overview on page 322 for reservoir location.


It is not necessary to regularly check clutch fluid unless you suspect there is a leak in the system. Adding fluid will not correct a leak. A fluid loss in this system could indicate a problem. Have the system inspected and repaired.


Refer to the Maintenance Schedule to determine how often you should check the fluid level in your clutch master cylinder reservoir and for the proper fluid. See Recommended Fluids and Lubricants on page 440.


334


How to Check and Add Fluid The proper fluid should be added if the level does not reach the bottom of the diaphragm when it is in place in the reservoir. See the instructions on the reservoir cap.


Engine Coolant The cooling system in your vehicle is filled with DEX-COOL® engine coolant. This coolant is designed to remain in your vehicle for five years or 150,000 miles (240 000 km), whichever occurs first, if you add only DEX-COOL® extended life coolant. The following explains your cooling system and how to add coolant when it is low. If you have a problem with engine overheating, see Engine Overheating on page 338.


A 50/50 mixture of clean, drinkable water and DEX-COOL® coolant will: (cid:127) Give freezing protection down to −34°F (−37°C). (cid:127) Give boiling protection up to 265°F (129°C). (cid:127) Protect against rust and corrosion. (cid:127) Help keep the proper engine temperature. (cid:127) Let the warning lights and gages work as


they should.


Notice: Using coolant other than DEX-COOL® may cause premature engine, heater core, or radiator corrosion. In addition, the engine coolant may require changing sooner, at the first maintenance service after each 30,000 miles (50 000 km) or 24 months, whichever occurs first. Any repairs would not be covered by your warranty. Always use DEX-COOL® (silicate-free) coolant in your vehicle.


335


If you use an improper coolant


Notice: mixture, your engine could overheat and be badly damaged. The repair cost would not be covered by your warranty. Too much water in the mixture can freeze and crack the engine, radiator, heater core, and other parts. Notice: If you use extra inhibitors and/or additives in your vehicle’s cooling system, you could damage your vehicle. Use only the proper mixture of the engine coolant listed in this manual for the cooling system. See Recommended Fluids and Lubricants on page 440 for more information.


What to Use Use a mixture of one-half clean, drinkable water and one-half DEX-COOL® coolant which will not damage aluminum parts. If you use this coolant mixture, you do not need to add anything else.


{CAUTION:


Adding only plain water to your cooling system can be dangerous. Plain water, or some other liquid such as alcohol, can boil before the proper coolant mixture will. Your vehicle’s coolant warning system is set for the proper coolant mixture. With plain water or the wrong mixture, your engine could get too hot but you would not get the overheat warning. Your engine could catch fire and you or others could be burned. Use a 50/50 mixture of clean, drinkable water and the proper coolant.


336


Checking Coolant


The coolant recovery tank cap has this symbol on it.


Adding Coolant If you need more coolant, add the proper DEX-COOL® coolant mixture at the coolant recovery tank.


It is located toward the rear of the engine compartment on the passenger’s side of the vehicle. See Engine Compartment Overview on page 322 for more information on location. The vehicle must be on a level surface. When your engine is cold, the coolant level should be at FULL COLD, or a little higher. When your engine is warm, the level could be above the FULL COLD level.


{CAUTION:


Turning the radiator pressure cap when the engine and radiator are hot can allow steam and scalding liquids to blow out and burn you badly. With the coolant recovery tank, you will almost never have to add coolant at the radiator. Never turn the radiator pressure cap — even a little — when the engine and radiator are hot.


337


Add coolant mixture at the recovery tank, but be careful not to spill it.


{CAUTION:


You can be burned if you spill coolant on hot engine parts. Coolant contains ethylene glycol, and it will burn if the engine parts are hot enough. Do not spill coolant on a hot engine.


Occasionally check the coolant level in the radiator. For information on how to add coolant to the radiator, see Cooling System on page 340. Radiator Pressure Cap Notice: installed, coolant loss and possible engine damage may occur. Be sure the cap is properly and tightly secured. See Engine Compartment Overview on page 322
for more information on location.


If the pressure cap is not tightly


Engine Overheating A coolant temperature gage is on the instrument panel. See Engine Coolant Temperature Gage on page 185. The air conditioning might stop working if the engine is too hot. This is normal and helps cool the engine. If Steam Is Coming From Your Engine


{CAUTION:


Steam from an overheated engine can burn you badly, even if you just open the hood. Stay away from the engine if you see or hear steam coming from it. Just turn it off and get everyone away from the vehicle until it cools down.Wait until there is no sign of steam or coolant before you open the hood. If you keep driving when your engine is overheated, the liquids in it can catch fire. (Continued)


CAUTION:


338


CAUTION:


(Continued)


You or others could be badly burned. Stop your engine if it overheats, and get out of the vehicle until the engine is cool.


If your engine catches fire because


Notice: you keep driving with no coolant, your vehicle can be badly damaged. The costly repairs would not be covered by your warranty. If No Steam Is Coming From Your Engine If you get an engine overheat warning but see or hear no steam, the problem may not be too serious. Sometimes the engine can get a little too hot when you: (cid:127) Climb a long hill on a hot day. (cid:127) Stop after high-speed driving. (cid:127) Idle for long periods in traffic. (cid:127) Tow a trailer. See “Driving on Grades” under


Towing a Trailer on page 297.


If you get the overheat warning with no sign of steam, try this for a minute or so: 1. In heavy traffic, let the engine idle in


NEUTRAL while stopped. If it is safe to do so, pull off the road, shift to PARK (P) or NEUTRAL and let the engine idle.


2. Turn off the air conditioning. 3. Turn on your heater to full hot at the highest fan


speed and open the windows as necessary. If you no longer have the overheat warning, you can drive. Just to be safe, drive slower for about 10 minutes. If the warning does not come back on, you can drive normally. If the warning continues, pull over, stop, and park your vehicle right away. If there is still no sign of steam, idle the engine for three minutes while you are parked. Push down the accelerator until the engine speed is about twice as fast as normal idle speed for at least three minutes while you are parked. If you still have the warning, turn off the engine and get everyone out of the vehicle until it cools down. You may decide not to lift the hood but to get service help right away.


339


Cooling System When you decide it is safe to lift the hood, here is what you will see:


A. Coolant Recovery Tank B. Engine Cooling Fan C. Radiator Pressure Cap If the coolant inside the coolant recovery tank is boiling, do not do anything else until it cools down. The vehicle should be parked on a level surface.


340


When the engine is cold, the coolant level should be at least up to the FULL COLD mark. If it is not, you may have a leak at the pressure cap or in the radiator hoses, heater hoses, radiator, water pump or somewhere else in the cooling system.


Notice: Engine damage from running your engine without coolant is not covered by your warranty. Notice: Using coolant other than DEX-COOL® may cause premature engine, heater core, or radiator corrosion. In addition, the engine coolant could require changing sooner, at 30,000 miles (50 000 km) or 24 months, whichever occurs first. Any repairs would not be covered by your warranty. Always use DEX-COOL® (silicate-free) coolant in your vehicle.


{CAUTION:


Heater and radiator hoses, and other engine parts, can be very hot. Do not touch them. If you do, you can be burned. Do not run the engine if there is a leak. If you run the engine, it could lose all coolant. That could cause an engine fire, and you could be burned. Get any leak fixed before you drive the vehicle.


If there seems to be no leak, start the engine again. The engine cooling fan speed should increase when idle speed is doubled by pushing the accelerator pedal down. If it does not, your vehicle needs service. Turn off the engine.


341


How to Add Coolant to the Coolant Recovery Tank If you have not found a problem yet, but the coolant level is not at the FULL COLD mark, add a 50/50 mixture of clean, drinkable water and DEX-COOL® engine coolant at the coolant recovery tank. See Engine Coolant on page 335
for more information.


{CAUTION:


Adding only plain water to your cooling system can be dangerous. Plain water, or some other liquid such as alcohol, can boil before the proper coolant mixture will. Your vehicle’s coolant warning system is set for the proper coolant mixture. With plain water or the wrong mixture, your engine could get too hot but you would not get the overheat warning. Your engine could catch fire and you or others could be burned. Use a 50/50 mixture of clean, drinkable water and DEX-COOL® coolant.


342


In cold weather, water can freeze and


Notice: crack the engine, radiator, heater core and other parts. Use the recommended coolant and the proper coolant mixture.


{CAUTION:


You can be burned if you spill coolant on hot engine parts. Coolant contains ethylene glycol and it will burn if the engine parts are hot enough. Do not spill coolant on a hot engine.


When the coolant in the coolant recovery tank is at the FULL COLD mark, start your vehicle. If the overheat warning continues, there is one more thing you can try. Add the proper mixture directly to the radiator, but be sure the cooling system is cool before you do it.


{CAUTION:


Steam and scalding liquids from a hot cooling system can blow out and burn you badly. They are under pressure, and if you turn the radiator pressure cap — even a little — they can come out at high speed. Never turn the cap when the cooling system, including the radiator pressure cap, is hot. Wait for the cooling system and radiator pressure cap to cool if you ever have to turn the pressure cap.


How to Add Coolant to the Radiator


1. Remove the radiator pressure cap when the cooling system, including the upper radiator hose, is no longer hot. Turn the pressure cap slowly counterclockwise about one full turn. If you hear a hiss, wait for that to stop. A hiss means there is still some pressure left.


2. Keep turning the cap to remove it.


343


3. Fill the radiator with the proper DEX-COOL®


coolant mixture, up to the base of the filler neck. See Engine Coolant on page 335
for more information about the proper coolant mixture.


6. Start the engine and let it run until you can


feel the upper radiator hose getting hot. Watch out for the engine cooling fan.


7. By this time, the coolant level inside the


radiator filler neck might be lower. If the level is lower, add more of the proper DEX-COOL® coolant mixture through the filler neck until the level reaches the base of the filler neck.


8. Then replace the pressure cap. At any time during this procedure if coolant begins to flow out of the filler neck, reinstall the pressure cap. Be sure to secure it tightly.


4. Fill the coolant recovery tank to the


FULL COLD mark.


5. Reinstall the cap on the coolant recovery tank,


but leave the radiator pressure cap off.


344


Engine Fan Noise This vehicle has a clutched engine cooling fan. When the clutch is engaged, the fan spins faster to provide more air to cool the engine. In most everyday driving conditions, the clutch is not engaged. This improves fuel economy and reduces fan noise. Under heavy vehicle loading, trailer towing and/or high outside temperatures, the fan speed increases when the clutch engages. So you may hear an increase in fan noise. This is normal and should not be mistaken as the transmission slipping or making extra shifts. It is merely the cooling system functioning properly. The fan will slow down when additional cooling is not required and the clutch disengages. You may also hear this fan noise when you start the engine. It will go away as the fan clutch disengages.


Power Steering Fluid


See Engine Compartment Overview on page 322 for reservoir location.


When to Check Power Steering Fluid It is not necessary to regularly check power steering fluid unless you suspect there is a leak in the system or you hear an unusual noise. A fluid loss in this system could indicate a problem. Have the system inspected and repaired.


345


How to Check Power Steering Fluid 1. Turn the key off and let the engine


compartment cool down.


2. Wipe the cap and the top of the reservoir clean. 3. Unscrew the cap and wipe the dipstick with a


clean rag.


4. Replace the cap and completely tighten it. 5. Then remove the cap again and look at


the fluid level on the dipstick.


The level should be between the ADD and FULL marks. If necessary, add only enough fluid to bring the level up to the proper range. What to Use To determine what kind of fluid to use, see Recommended Fluids and Lubricants on page 440. Always use the proper fluid. Failure to use the proper fluid can cause leaks and damage hoses and seals.


Windshield Washer Fluid What to Use When you need windshield washer fluid, be sure to read the manufacturer’s instructions before use. If you will be operating your vehicle in an area where the temperature may fall below freezing, use a fluid that has sufficient protection against freezing. Adding Washer Fluid


Open the cap with the washer symbol on it. Add washer fluid until the tank is full. See Engine Compartment Overview on page 322
for reservoir location.


346


Notice: (cid:127) When using concentrated washer fluid, follow the manufacturer’s instructions for adding water.


(cid:127) Do not mix water with ready-to-use washer


fluid. Water can cause the solution to freeze and damage your washer fluid tank and other parts of the washer system. Also, water does not clean as well as washer fluid.


(cid:127) Fill your washer fluid tank only


three-quarters full when it is very cold. This allows for expansion if freezing occurs, which could damage the tank if it is completely full.


(cid:127) Do not use engine coolant (antifreeze) in


your windshield washer. It can damage your washer system and paint.


Brakes Brake Fluid


Your brake master cylinder reservoir is filled with DOT-3 brake fluid. See Engine Compartment Overview on page 322 for the location of the reservoir.


There are only two reasons why the brake fluid level in the reservoir might go down. The first is that the brake fluid goes down to an acceptable level during normal brake lining wear. When new linings are put in, the fluid level goes back up. The other reason is that fluid is leaking out of the brake system. If it is, you should have your brake system fixed, since a leak means that sooner or later your brakes will not work well, or will not work at all.


347


Checking Brake Fluid You can check the brake fluid without taking off the cap. Look at the brake fluid reservoir. The fluid level should be above MIN. If it is not, have your brake system checked to see if there is a leak. After work is done on the brake hydraulic system, make sure the level is above the MIN but not over the MAX mark.


So, it is not a good idea to top off your brake fluid. Adding brake fluid will not correct a leak. If you add fluid when your linings are worn, then you will have too much fluid when you get new brake linings. You should add or remove brake fluid, as necessary, only when work is done on the brake hydraulic system.


{CAUTION:


If you have too much brake fluid, it can spill on the engine. The fluid will burn if the engine is hot enough. You or others could be burned, and your vehicle could be damaged. Add brake fluid only when work is done on the brake hydraulic system. See “Checking Brake Fluid” in this section.


Refer to the Maintenance Schedule to determine when to check your brake fluid. See Scheduled Maintenance on page 429.


348


What to Add When you do need brake fluid, use only DOT-3
brake fluid. Use new brake fluid from a sealed container only. See Recommended Fluids and Lubricants on page 440. Always clean the brake fluid reservoir cap and the area around the cap before removing it. This will help keep dirt from entering the reservoir.


{CAUTION:


With the wrong kind of fluid in the brake system, the brakes may not work well, or they may not even work at all. This could cause a crash. Always use the proper brake fluid.


Notice: (cid:127) Using the wrong fluid can badly damage brake system parts. For example, just a few drops of mineral-based oil, such as engine oil, in the brake system can damage brake system parts so badly that they will have to be replaced. Do not let someone put in the wrong kind of fluid. If you spill brake fluid on your vehicle’s painted surfaces, the paint finish can be damaged. Be careful not to spill brake fluid on your vehicle. If you do, wash it off immediately. See Washing Your Vehicle on page 410.


(cid:127)


349


Properly torqued wheel nuts are necessary to help prevent brake pulsation. When tires are rotated, inspect brake pads for wear and evenly tighten wheel nuts in the proper sequence to GM torque specifications. Brake linings should always be replaced as complete axle sets. Brake Pedal Travel See your dealer if the brake pedal does not return to normal height, or if there is a rapid increase in pedal travel. This could be a sign of brake trouble. Brake Adjustment Every time you make a brake stop, your disc brakes adjust for wear.


Brake Wear Your vehicle has four-wheel disc brakes. Disc brake pads have built-in wear indicators that make a high-pitched warning sound when the brake pads are worn and new pads are needed. The sound may come and go or be heard all the time your vehicle is moving, except when you are pushing on the brake pedal firmly.


{CAUTION:


The brake wear warning sound means that soon the brakes will not work well. That could lead to an accident. When you hear the brake wear warning sound, have your vehicle serviced.


Notice: Continuing to drive with worn-out brake pads could result in costly brake repair. Some driving conditions or climates may cause a brake squeal when the brakes are first applied or lightly applied. This does not mean something is wrong with your brakes.


350


Replacing Brake System Parts The braking system on a vehicle is complex. Its many parts have to be of top quality and work well together if the vehicle is to have really good braking. Your vehicle was designed and tested with top-quality GM brake parts. When you replace parts of your braking system — for example, when your brake linings wear down and you need new ones put in — be sure you get new approved GM replacement parts. If you do not, your brakes may no longer work properly. For example, if someone puts in brake linings that are wrong for your vehicle, the balance between your front and rear brakes can change — for the worse. The braking performance you have come to expect can change in many other ways if someone puts in the wrong replacement brake parts.


Battery Your vehicle has a maintenance free battery. When it is time for a new battery, get one that has the replacement number shown on the original battery’s label. We recommend an ACDelco® replacement battery. See Engine Compartment Overview on page 322 for battery location. Warning: Battery posts, terminals, and related accessories contain lead and lead compounds, chemicals known to the State of California to cause cancer and reproductive harm. Wash hands after handling.


351


Vehicle Storage If you are not going to drive your vehicle for 25 days or more, remove the black, negative (−) cable from the battery. This will help keep your battery from running down.


{CAUTION:


Batteries have acid that can burn you and gas that can explode. You can be badly hurt if you are not careful. See Jump Starting on page 352 for tips on working around a battery without getting hurt.


Jump Starting If your vehicle’s battery has run down, you may want to use another vehicle and some jumper cables to start your vehicle. Be sure to use the following steps to do it safely.


352


{CAUTION:


Batteries can hurt you. They can be dangerous because:


(cid:127) They contain acid that can burn you. (cid:127) They contain gas that can explode


(cid:127) They contain enough electricity to


or ignite.


burn you.


If you do not follow these steps exactly, some or all of these things can hurt you.


Ignoring these steps could result in


Notice: costly damage to your vehicle that would not be covered by your warranty. Trying to start your vehicle by pushing or pulling it will not work, and it could damage your vehicle. 1. Check the other vehicle. It must have a


12-volt battery with a negative ground system.


If the other vehicle’s system is not a


Notice: 12-volt system with a negative ground, both vehicles can be damaged. Only use vehicles with 12-volt systems with negative grounds to jump start your vehicle. 2. Get the vehicles close enough so the jumper


cables can reach, but be sure the vehicles are not touching each other. If they are, it could cause a ground connection you do not want. You would not be able to start your vehicle, and the bad grounding could damage the electrical systems. To avoid the possibility of the vehicles rolling, set the parking brake firmly on both vehicles involved in the jump start procedure. Put an automatic transmission in PARK (P) or a manual transmission in NEUTRAL before setting the parking brake. If you have a four-wheel-drive vehicle, be sure the transfer case is not in NEUTRAL.


Notice: If you leave your radio or other accessories on during the jump starting procedure, they could be damaged. The repairs would not be covered by your warranty. Always turn off your radio and other accessories when jump starting your vehicle. 3. Turn off the ignition on both vehicles.


Unplug unnecessary accessories plugged into the cigarette lighter or the accessory power outlets. Turn off the radio and all lamps that are not needed. This will avoid sparks and help save both batteries. And it could save the radio!


353


4. Open the hoods and locate the batteries on both vehicles. You will use the positive (+) battery terminal and the remote negative (−) jump starting terminal to jump start your vehicle. To access the positive (+) battery terminal, open the terminal cover. See Engine Compartment Overview on page 322 for more information on the terminal locations.


{CAUTION:


Using a match near a battery can cause battery gas to explode. People have been hurt doing this, and some have been blinded. Use a flashlight if you need more light.


CAUTION:


(Continued)


CAUTION:


(Continued)


Be sure the batteries have enough water. You do not need to add water to the ACDelco® battery (or batteries) installed in your new vehicle. But if a battery has filler caps, be sure the right amount of fluid is there. If it is low, add water to take care of that first. If you do not, explosive gas could be present. Battery fluid contains acid that can burn you. Do not get it on you. If you accidentally get it in your eyes or on your skin, flush the place with water and get medical help immediately.


354


{CAUTION:


Fans or other moving engine parts can injure you badly. Keep your hands away from moving parts once the engine is running.


5. Check that the jumper cables do not have loose or missing insulation. If they do, you could get a shock. The vehicles could be damaged too. Before you connect the cables, here are some basic things you should know. Positive (+) will go to positive (+) or to a remote positive (+) terminal if the vehicle has one. Negative (−) will go to a heavy, unpainted metal engine part or to a remote negative (−) terminal if the vehicle has one. Do not connect positive (+) to negative (−) or you will get a short that would damage the battery and maybe other parts too. And do not connect the negative (−) cable to the negative (−) terminal on the dead battery because this can cause sparks.


6. Connect the red positive (+) cable to the positive (+) terminal of the dead battery. Use a remote positive (+) terminal if the vehicle has one.


7. Do not let the other end touch metal. Connect


it to the positive (+) terminal of the good battery. Use a remote positive (+) terminal if the vehicle has one.


8. Now connect the black negative (−) cable to the negative (−) terminal of the good battery. Use a remote negative (−) terminal if the vehicle has one. Do not let the other end touch anything until the next step. The other end of the negative (−) cable does not go to the dead battery. It goes to a heavy, unpainted metal engine part, or to a remote negative (−) terminal on the vehicle with the dead battery.


355


9. Connect the other end of the negative (−) cable at least 18 inches (45 cm) away from the dead battery, but not near engine parts that move. The electrical connection is just as good there, and the chance of sparks getting back to the battery is much less. Your vehicle has a remote negative (−) terminal, marked GND (Ground), for this purpose.


10. Now start the vehicle with the good battery and


run the engine for a while.


11. Try to start the vehicle that had the dead


battery. If it will not start after a few tries, it probably needs service.


Notice: If the jumper cables are connected or removed in the wrong order, electrical shorting may occur and damage the vehicle. The repairs would not be covered by your warranty. Always connect and remove the jumper cables in the correct order, making sure that the cables do not touch each other or other metal.


356


Jumper Cable Removal


A. Heavy, Unpainted Metal Engine Part or


Remote Negative (−) Terminal


B. Good Battery or Remote Positive (+) and


Remote Negative (−) Terminals


C. Dead Battery or Remote Positive (+) Terminal


To disconnect the jumper cables from both vehicles, do the following: 1. Disconnect the black negative (−) cable from


the vehicle that had the dead battery.


2. Disconnect the black negative (−) cable from


the vehicle with the good battery.


3. Disconnect the red positive (+) cable from the


vehicle with the good battery.


4. Disconnect the red positive (+) cable from the


other vehicle.


5. Return the positive (+) battery terminal cover


to its original position.


Rear Axle When to Check and Change Lubricant It is not necessary to regularly check rear axle fluid unless you suspect there is a leak or you hear an unusual noise. A fluid loss could indicate a problem. Have it inspected and repaired. How to Check Lubricant


To get an accurate reading, the vehicle should be on a level surface.


357


Headlamp Aiming The vehicle has a visual optical headlamp aiming system. The aim has been preset at the factory and should need no further adjustment. However, if the vehicle is damaged in an accident, the headlamp aim may be affected and adjustment may be necessary. If oncoming vehicles flash their high beams at you, this may also mean the vertical aim needs to be adjusted. It is recommended that the vehicle is taken to your dealer for service if the headlamps need to be re-aimed. It is possible however, to re-aim the headlamps as described in the following procedure.


The proper level is from 0 to 3/8 inch (0 mm to 10 mm) below the bottom of the filler plug hole, located on the rear axle. What to Use See Recommended Fluids and Lubricants on page 440 to determine which kind of lubricant to use. Four-Wheel Drive It is recommended that the four-wheel drive transfer case fluid be checked and filled by your dealer. Front Axle It is not necessary to regularly check front axle fluid unless you suspect there is a leak or you hear an unusual noise. A fluid loss could indicate a problem. It is recommended that the front axle fluid be checked and filled by your dealer.


358


The vehicle should be properly prepared as follows: (cid:127) The vehicle should be placed so the headlamps


are 25 ft. (7.6 m) from a light colored wall or other flat surface.


(cid:127) The vehicle must have all four tires on a level surface which is level all the way to the wall or other flat surface.


To adjust the vertical aim, do the following: 1. Open the hood. See Hood Release on


page 321 for more information.


(cid:127) The vehicle should be placed so it is


perpendicular to the wall or other flat surface. (cid:127) The vehicle should not have any snow, ice, or


mud on it.


(cid:127) The vehicle should be fully assembled and all other work stopped while headlamp aiming is being performed.


(cid:127) The vehicle should be normally loaded with a


full tank of fuel and one person or 160 lbs (75 kg) sitting on the driver’s seat. (cid:127) Tires should be properly inflated. (cid:127) The spare tire is in its original location in


the vehicle.


2. Find the aim dot on the lens of the headlamp. 3. Measure the distance from the ground to the aim dot on the headlamp. Record the distance.


359


4. At the wall or other flat surface, measure from the ground upward the recorded distance from Step 2 and mark it.


5. Draw or tape a horizontal line the width of the vehicle at the wall or other flat surface where it was marked it Step 4.


Notice: Do not cover a headlamp to improve beam cut-off when aiming. Covering a headlamp may cause excessive heat build-up which may cause damage to the headlamp. 6. Turn on the headlamps and place a piece of


cardboard or equivalent in front of the headlamp not being aimed. This should allow only the beam of light from the headlamp being aimed to be seen on the flat surface.


360


Passenger’s Side Shown


7. Locate the vertical headlamp aiming screws,


which are under the hood near each headlamp assembly. The adjustment screw can be turned with an E8 Torx® socket or T15 Torx® screwdriver.


Bulb Replacement For the proper type of replacement bulbs, see Replacement Bulbs on page 365. For any bulb changing procedure not listed in this section, contact your dealer.


Halogen Bulbs


{CAUTION:


Halogen bulbs have pressurized gas inside and can burst if you drop or scratch the bulb. You or others could be injured. Be sure to read and follow the instructions on the bulb package.


361


8. Turn the vertical aiming screw until the


headlamp beam is aimed to the horizontal tape line. If you turn it clockwise, it will raise the beam and if you turn it counterclockwise, it will lower the beam. The top edge of the cut-off should be positioned at the bottom edge of the horizontal tape line.


9. Repeat Steps 7 and 8 for the opposite


headlamp.


Headlamps To replace a headlamp bulb, do the following: 1. Open the hood. See Hood Release on


page 321 for more information.


2. Reach in and access the headlamp bulb


socket from inside the engine compartment.


4. Unplug the electrical connector by pushing


the release tab and pulling the bulb socket out.


5. Replace with a new bulb socket. 6. Reinstall the electrical connector. 7. Reinstall the new bulb socket into the


headlamp assembly and turn it clockwise to secure.


8. Close the hood.


3. Turn the bulb socket counterclockwise to


remove it from the headlamp assembly and pull it straight out.


362


Taillamps, Turn Signal, Stoplamps and Back-up Lamps


A. Stoplamp,


Taillamp and Turn Signal Lamp


B. Back-up Lamp


To replace one of these bulbs in the taillamp assembly, do the following: 1. Open the swing-gate. See Swing-gate on


page 95 for more information.


2. Remove the


two screws from the taillamp assembly.


Passenger’s Side


Shown


363


3. Pull the taillamp assembly away from the


vehicle.


4. Turn the bulb socket counterclockwise to


remove it from the taillamp assembly. 5. Holding the socket, pull the old bulb to


release it from the socket.


6. Push the new bulb into the socket until it


clicks.


7. Insert the bulb socket into the taillamp


assembly and turn it clockwise to secure.


8. Reinstall the taillamp assembly by lining up


the locator pins with the retainers in the vehicle’s body.


9. Reinstall the two screws and tighten. 10. Close the swing-gate.


364


License Plate Lamp To replace one of these bulbs, do the following:


1. Reach under the bumper for the bulb socket. 2. Remove the two screws holding the license


plate lamp.


3. Pull the license plate lamp away from the


fascia.


Windshield Wiper Blade Replacement Windshield wiper blades should be inspected for wear and cracking. See Scheduled Maintenance on page 429 for more information. Replacement blades come in different types and are removed in different ways. For proper type and length, see Normal Maintenance Replacement Parts on page 442.


4. Turn the bulb socket counterclockwise and pull the bulb straight out of the license plate lamp assembly.


5. Install the new bulb into the socket. 6. Insert the bulb socket into the license plate


lamp assembly and turn it clockwise to secure.


7. Replace the license plate lamp assembly and


tighten the two screws.


Replacement Bulbs


Exterior Lamp


Bulb Number


Back-up Lamp, Stoplamp, Taillamp and Turn Signal Lamp


License Plate Lamp


Low-Beam and High-Beam Headlamp


3157K


194


H13


For replacement bulbs not listed here, contact your dealer.


365


To replace the windshield wiper blade assembly do the following: 1. Lift the wiper arm away from the windshield.


2. Push the release lever (B) to disengage the hook and push the wiper arm (A) out of the blade (C).


3. Push the new wiper blade securely on the wiper arm until you hear the release lever click into place.


To replace the rear wiper blade, follow the steps listed above.


366


Tires Your new vehicle comes with high-quality tires made by a leading tire manufacturer. If you ever have questions about your tire warranty and where to obtain service, see your GM Warranty booklet for details. For additional information refer to the tire manufacturer’s booklet included with your vehicle.


{CAUTION:


Poorly maintained and improperly used tires are dangerous.


(cid:127) Overloading your vehicle’s tires can cause overheating as a result of too much friction. You could have an air-out and a serious accident. See Loading Your Vehicle on page 289.


CAUTION:


(Continued)


CAUTION:


(Continued)


(cid:127) Underinflated tires pose the same


danger as overloaded tires. The resulting accident could cause serious injury. Check all tires frequently to maintain the recommended pressure. Tire pressure should be checked when your vehicle’s tires are cold. See Inflation - Tire Pressure on page 375.


(cid:127) Overinflated tires are more likely to


be cut, punctured, or broken by a sudden impact — such as when you hit a pothole. Keep tires at the recommended pressure.


(cid:127) Worn, old tires can cause accidents.


If the tire’s tread is badly worn, or if your vehicle’s tires have been damaged, replace them.


367


Tire Sidewall Labeling Useful information about a tire is molded into the sidewall. The following illustrations are examples of a typical P-Metric and a LT-Metric tire sidewall.


Passenger (P-Metric) Tire


368


(A) Tire Size: The tire size code is a combination of letters and numbers used to define a particular tire’s width, height, aspect ratio, construction type, and service description. See the “Tire Size” illustration later in this section for more detail.


(B) TPC Spec (Tire Performance Criteria Specification): Original equipment tires designed to GM’s specific tire performance criteria have a TPC specification code molded onto the sidewall. GM’s TPC specifications meet or exceed all federal safety guidelines.


(C) DOT (Department of Transportation): The Department of Transportation (DOT) code indicates that the tire is in compliance with the U.S. Department of Transportation Motor Vehicle Safety Standards.


(D) Tire Identification Number (TIN): The letters and numbers following DOT code are the Tire Identification Number (TIN). The TIN shows the manufacturer and plant code, tire size, and date the tire was manufactured. The TIN is molded onto both sides of the tire, although only one side may have the date of manufacture.


(E) Tire Ply Material: The type of cord and number of plies in the sidewall and under the tread.


(F) Uniform Tire Quality Grading (UTQG): Tire manufacturers are required to grade tires based on three performance factors: treadwear, traction, and temperature resistance. For more information, see Uniform Tire Quality Grading on page 386.


(G) Maximum Cold Inflation Load Limit: Maximum load that can be carried and the maximum pressure needed to support that load. For information on recommended tire pressure see Inflation - Tire Pressure on page 375
and Loading Your Vehicle on page 289.


Light Truck (LT-Metric) Tire


(A) Tire Size: The tire size code is a combination of letters and numbers used to define a particular tire’s width, height, aspect ratio, construction type, and service description. See the “Tire Size” illustration later in this section for more detail.


369


(B) TPC Spec (Tire Performance Criteria Specification): Original equipment tires designed to GM’s specific tire performance criteria have a TPC specification code molded onto the sidewall. GM’s TPC specifications meet or exceed all federal safety guidelines.


(C) Dual Tire Maximum Load: Maximum load that can be carried and the maximum pressure needed to support that load when used in a dual configuration. For information on recommended tire pressure see Inflation - Tire Pressure on page 375 and Loading Your Vehicle on page 289.


(D) DOT (Department of Transportation): The Department of Transportation (DOT) code indicates that the tire is in compliance with the U.S. Department of Transportation Motor Vehicle Safety Standards.


(E) Tire Identification Number (TIN): The letters and numbers following DOT code are the Tire Identification Number (TIN). The TIN shows the manufacturer and plant code, tire size, and date the tire was manufactured. The TIN is molded onto both sides of the tire, although only one side may have the date of manufacture.


(F) Tire Ply Material: The type of cord and number of plies in the sidewall and under the tread.


(G) Single Tire Maximum Load: Maximum load that can be carried and the maximum pressure needed to support that load when used as a single. For information on recommended tire pressure see Inflation - Tire Pressure on page 375 and Loading Your Vehicle on page 289.


370


Tire Size The following examples show the different parts of a tire size.


Passenger (P-Metric) Tire


Light Truck (LT-Metric) Tire


(A) Passenger (P-Metric) Tire: The United States version of a metric tire sizing system. The letter P as the first character in the tire size means a passenger vehicle tire engineered to standards set by the U.S. Tire and Rim Association.


(A) Light Truck (LT-Metric) Tire: The United States version of a metric tire sizing system. The letters LT as the first two characters in the tire size means a light truck tire engineered to standards set by the U.S. Tire and Rim Association.


(B) Tire Width: The three-digit number indicates the tire section width in millimeters from sidewall to sidewall.


(C) Aspect Ratio: A two-digit number that indicates the tire height-to-width measurements. For example, if the tire size aspect ratio is 75, as shown in item C of the light truck (LT-Metric) tire illustration, it would mean that the tire’s sidewall is 75 percent as high as it is wide.


(D) Construction Code: A letter code is used to indicate the type of ply construction in the tire. The letter R means radial ply construction; the letter D means diagonal or bias ply construction; and the letter B means belted-bias ply construction.


371


(E) Rim Diameter: Diameter of the wheel in inches.


Bead: The tire bead contains steel wires wrapped by steel cords that hold the tire onto the rim.


(F) Service Description: The service description indicates the load range and speed rating of a tire. The load index can range from 1 to 279. Speed ratings range from A to Z.


Tire Terminology and Definitions


Air Pressure: The amount of air inside the tire pressing outward on each square inch of the tire. Air pressure is expressed in pounds per square inch (psi) or kilopascal (kPa).


Accessory Weight: This means the combined weight of optional accessories. Some examples of optional accessories are, automatic transmission/ transaxle, power steering, power brakes, power windows, power seats, and air conditioning.


Aspect Ratio: The relationship of a tire’s height to its width.


Belt: A rubber coated layer of cords that is located between the plies and the tread. Cords may be made from steel or other reinforcing materials.


372


Bias Ply Tire: A pneumatic tire in which the plies are laid at alternate angles less than 90 degrees to the centerline of the tread.


Cold Tire Pressure: The amount of air pressure in a tire, measured in pounds per square inch (psi) or kilopascals (kPa) before a tire has built up heat from driving. See Inflation - Tire Pressure on page 375.


Curb Weight: This means the weight of a motor vehicle with standard and optional equipment including the maximum capacity of fuel, oil, and coolant, but without passengers and cargo.


DOT Markings: A code molded into the sidewall of a tire signifying that the tire is in compliance with the U.S. Department of Transportation (DOT) motor vehicle safety standards. The DOT code includes the Tire Identification Number (TIN), an alphanumeric designator which can also identify the tire manufacturer, production plant, brand, and date of production.


GVWR: Gross Vehicle Weight Rating. See Loading Your Vehicle on page 289.


GAWR FRT: Gross Axle Weight Rating for the front axle. See Loading Your Vehicle on page 289.


GAWR RR: Gross Axle Weight Rating for the rear axle. See Loading Your Vehicle on page 289.


Intended Outboard Sidewall: The side of an asymmetrical tire, that must always face outward when mounted on a vehicle.


Kilopascal (kPa): The metric unit for air pressure.


Light Truck (LT-Metric) Tire: A tire used on light duty trucks and some multipurpose passenger vehicles.


Load Index: An assigned number ranging from 1 to 279 that corresponds to the load carrying capacity of a tire.


Maximum Inflation Pressure: The maximum air pressure to which a cold tire may be inflated. The maximum air pressure is molded onto the sidewall.


Maximum Load Rating: The load rating for a tire at the maximum permissible inflation pressure for that tire.


Maximum Loaded Vehicle Weight: The sum of curb weight, accessory weight, vehicle capacity weight, and production options weight.


Normal Occupant Weight: The number of occupants a vehicle is designed to seat multiplied by 150 lbs (68 kg). See Loading Your Vehicle on page 289.


Occupant Distribution: Designated seating positions.


Outward Facing Sidewall: The side of an asymmetrical tire that has a particular side that faces outward when mounted on a vehicle. The side of the tire that contains a whitewall, bears white lettering, or bears manufacturer, brand, and/or model name molding that is higher or deeper than the same moldings on the other sidewall of the tire.


Passenger (P-Metric) Tire: A tire used on passenger cars and some light duty trucks and multipurpose vehicles.


373


Recommended Inflation Pressure: Vehicle manufacturer’s recommended tire inflation pressure as shown on the tire placard. See Inflation - Tire Pressure on page 375 and Loading Your Vehicle on page 289.


Radial Ply Tire: A pneumatic tire in which the ply cords that extend to the beads are laid at 90 degrees to the centerline of the tread.


Rim: A metal support for a tire and upon which the tire beads are seated.


Sidewall: The portion of a tire between the tread and the bead.


Speed Rating: An alphanumeric code assigned to a tire indicating the maximum speed at which a tire can operate.


Traction: The friction between the tire and the road surface. The amount of grip provided.


Tread: The portion of a tire that comes into contact with the road.


Treadwear Indicators: Narrow bands, sometimes called wear bars, that show across the tread of a tire when only 1/16 inch (1.6 mm) of tread remains. See When It Is Time for New Tires on page 383.


374


UTQGS (Uniform Tire Quality Grading Standards): A tire information system that provides consumers with ratings for a tire’s traction, temperature, and treadwear. Ratings are determined by tire manufacturers using government testing procedures. The ratings are molded into the sidewall of the tire. See Uniform Tire Quality Grading on page 386.


Vehicle Capacity Weight: The number of designated seating positions multiplied by 150 lbs (68 kg) plus the rated cargo load. See Loading Your Vehicle on page 289.


Vehicle Maximum Load on the Tire: Load on an individual tire due to curb weight, accessory weight, occupant weight, and cargo weight.


Vehicle Placard: A label permanently attached to a vehicle showing the vehicle’s capacity weight and the original equipment tire size and recommended inflation pressure. See “Tire and Loading Information Label” under Loading Your Vehicle on page 289.


Inflation - Tire Pressure Tires need the correct amount of air pressure to operate effectively. Notice: Do not let anyone tell you that under-inflation or over-inflation is all right. It is not. If your tires do not have enough air (under-inflation), you can get the following: (cid:127) Too much flexing (cid:127) Too much heat (cid:127) Tire overloading (cid:127) Premature or irregular wear (cid:127) Poor handling (cid:127) Reduced fuel economy If your tires have too much air (over-inflation), you can get the following: (cid:127) Unusual wear (cid:127) Poor handling (cid:127) Rough ride (cid:127) Needless damage from road hazards


A Tire and Loading Information label is attached to the vehicle’s center pillar (B-pillar), below the driver’s door latch. This label shows your vehicle’s original equipment tires and the correct inflation pressures for your tires when they are cold. The recommended cold tire inflation pressure, shown on the label, is the minimum amount of air pressure needed to support your vehicle’s maximum load carrying capacity. For additional information regarding how much weight your vehicle can carry, and an example of the Tire and Loading Information label, see Loading Your Vehicle on page 289. How you load your vehicle affects vehicle handling and ride comfort, never load your vehicle with more weight than it was designed to carry. When to Check Check your tires once a month or more. Also check the tire pressure of the spare tire. If you have a compact spare tire, it should be at 60 psi (420 kPa). See Spare Tire on page 405 for additional information.


375


Tire Pressure Monitor System Your vehicle has a Tire Pressure Monitor System (TPMS). This system uses radio and sensor technology to check tire pressure levels. TPMS sensors are mounted onto each tire and wheel assembly on your vehicle, including the spare tire. The TPMS sensors monitor the air pressure in your vehicle’s tires and transmit the tire pressure readings to a receiver located in the vehicle. When a low tire pressure condition is detected, the TPMS will illuminate the low tire pressure warning light located in the instrument panel cluster, and at the same time display the LOW TIRE warning message on the Driver Information Center (DIC). The low tire pressure warning light and the LOW TIRE warning message appear at each ignition cycle until the tires are inflated to the correct inflation pressure.


How to Check Use a good quality pocket-type gage to check tire pressure. You cannot tell if your tires are properly inflated simply by looking at them. Radial tires may look properly inflated even when they are underinflated. Check the tire’s inflation pressure when the tires are cold. Cold means your vehicle has been sitting for at least three hours or driven no more than 1 mile (1.6 km). Remove the valve cap from the tire valve stem. Press the tire gage firmly onto the valve to get a pressure measurement. If the cold tire inflation pressure matches the recommended pressure on the Tire and Loading Information label, no further adjustment is necessary. If the inflation pressure is low, add air until you reach the recommended amount. If you overfill the tire, release air by pushing on the metal stem in the center of the tire valve. Recheck the tire pressure with the tire gage. Be sure to put the valve caps back on the valve stems. They help prevent leaks by keeping out dirt and moisture.


376


For additional information and details about the DIC operation and displays see DIC Controls and Displays on page 192 and DIC Warnings and Messages on page 196. You may notice, during cooler weather conditions, that the low tire pressure warning light and the DIC LOW TIRE message may come on when the vehicle is first started, and then turn off as you start to drive. This may be an early indicator that the air pressure in the tire(s) is getting low and needs to be inflated to the proper pressure.

Loading...
x